Rapid Growth of Whiskers in Evaporated Tin Films Under Influence of Electric Field

A. Vasko V. Karpov

The University of Toledo

September 25, 2014
"Electrostatic Fields and Current Flow Impact on Whisker Growth"
Robert D. Hilty, Ned Corman, Hank Herrmann
Figure: Left: SEM image of whiskers in “electric region”. Right: Statistics of whiskers in “current region”.
Their conclusion: "Electrical bias does not effect whisker growth for room temperature exposures on this plating"
This is due to qualitative (no statistics collected) similarities in regions of different field strength

BUT! Whiskers in "E field region" up to 100 μm long, compared to $< 30 \mu$m in "current region"

My conclusion: Evidence of electric bias effect, though not of linear nature.
The previous paper also found statistically meaningful differences in whisker length and densities in regions of different current densities, but no simple (e.g., monotonic) relationship. It is speculated that the stochastic components of whisker growth dominate the effects of current density in this experiment.

1 Used two current densities; the highest always produced more whiskers, and whisker densities increased with time under stress

Factors Governing Tin Whisker Growth
Erika R. Crandall
Disseration, 2012

1 “In conclusion, exposing a 1 μm Sn film pattern to 0.2 A of current produced whiskers in hours instead of weeks or months. “

However, our work presented here considers only field, at zero current
Films deposited through thermal evaporation

The evaporator allows multiple samples per deposition

Therefore, the control and experimental sample were deposited at once and are identical

Samples were deposited on TEC (fluorine doped tin oxide) glass substrates, for ease of attaching electrodes

Sn thickness = 150nm

Control sample was stored in a box; experimental sample was exposed to electric field
Capacitive Setup

1. Spacers
 \(\approx 50 \mu m \)

2. Voltage = 14.5V

3. Field
 \(\approx 3000 \text{V/cm} \)

4. Field applied parallel to direction of grain growth

5. Field applied for 7 days

Vasko, Karpov
Whiskers
Experimental Sample:

1. Experimental sample has ~ 30 whiskers in area $0.4\text{mm} \times 0.3\text{mm}$

2. Control sample has $0 \sim 1$ whiskers in same area

3. Whisker length on experimental sample up to $\sim 100\mu m$

4. Control sample whisker $\sim 5\mu m$

5. *Order of magnitude* differences in whisker densities and lengths
Figure: Higher magnification confirms normal whisker morphology and presence of additional, smaller whiskers.
Figure: Previous Whisker Lengths and Density Representative of Sample Exposed to E Field
Higher Magnification

Figure: There is one whisker in this region on the control sample! (And one feature that looks like a whisker but is revealed to not be one under higher magnification, lower right inset)
Whisker Statistics
For Experimental Sample

1. Mean length = 14 µm
2. Standard Dev. = 23 µm
3. Skew = 3.2
Future Work

1. Reproduce results
2. Statistics as function of time under field
3. Other deposition conditions – sputtering as well as thermal evaporation, possible stress control